
32 communications of the acm | august 2013 | vol. 56 | no. 8

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 b
y

 A
r

i
n

a
 H

a
b

i
c

h

doi:10.1145/2492007.2492019	 George V. Neville-Neil

 Article development led by
 queue.acm.org

Kode Vicious
Cherry-Picking and
the Scientific Method
Software is supposed be a part of computer science,
and science demands proof.

Dear KV,
I have spent the past three weeks try-
ing to cherry-pick changes out of one
branch into another. When do I just
give up and merge?

In the Pits

Dear Pits,
I once rode home with a friend from
a computer conference in Monterey.
It just so happened that this friend
is a huge fan of fresh cherries, and
when he saw a small stand selling
baskets of them he stopped to buy
some. Another trait this friend pos-
sesses is that he can’t ever pass up a
good deal. So while haggling with the
cherry seller, it became obvious that
buying a whole flat of cherries would
be a better deal than buying a single
basket, even though that was all we
really wanted. Not wanting to pass
up a deal, however, my friend bought
the entire flat and off we went—eat-
ing and talking. It took another 45
minutes to get home, and during that
time we had eaten more than half
the flat of cherries. I could not look
at anything even remotely cherry-fla-
vored for months; and today, when
someone says “cherry-picking,” that
does not conjure up happy images of
privileged kids playing farmer on Sat-
urday mornings along the California
coast—I just feel ill.

All of which brings me to your let-
ter. It is always difficult to say when
someone else should “just give up and
do X” no matter what X is, but at some
point you know—deep down, some-
where in that place that makes you an
engineer—what started out as a quick
bit of cherry-picking has turned into

a horrific slog through the mud, and
nothing short of a John Deere tractor
is going to get you out of it. The happy
moments in the sunshine have ended,
it is raining, you are cold, and you just
want to go home. That is the time to
stop and try again.

I know this probably ought to

viewpoints

august 2013 | vol. 56 | no. 8 | communications of the acm 33

V
viewpoints

note taking that allowed me to make
this a bit easier. When I have a theory
about a problem, I create a note titled
THEORY, and write down my idea.
Under this, I write up all my tests
(which I call TEST, because like any
good programmer, I do not want to
keep typing HYPOTHESIS). The note-
taking system I currently use is Org
mode in Emacs, which lets you create
sequences that can be tied to hot keys,
allowing you to change labels quickly.
For bugs, I have labels called BUG,
ANALYZED, PATCHED, |, and FIXED,
while for hypotheses I have either
PROVEN or DISPROVEN.

I always keep both the proven and
disproven hypotheses. Why do I keep
both? Because that way I know what
I tried, and what worked and what
failed. This proves to be invaluable
when you have a boss with OCD, or, as
they like to be called, “detail oriented.”
By keeping both your successes and
failures, you can always go back, say in
three months when the code breaks in
a disturbingly similar way to the bug
you closed, and look at what you tested
last time. Maybe one of those hypoth-
eses will prove to be useful, or maybe
they will just remind you of the dumb
things you tried, so you do not waste
time trying them again. Whatever the
case, you should store them, backed
up, in some version-controlled way.
Mine are in my personal source-code
repository. You have your own reposi-
tory, right? Right?!

KV

 Related articles
 on queue.acm.org

Kode Vicious Bugs Out

George Neville-Neil
http://queue.acm.org/detail.cfm?id=1127862

Voyage in the Agile Memeplex

Philippe Kruchten
http://queue.acm.org/detail.cfm?id=1281893

ORM in Dynamic Languages
Chris Richardson
http://queue.acm.org/detail.cfm?id=1394140

George V. Neville-Neil (kv@acm.org) is the proprietor of
Neville-Neil Consulting and a member of the ACM Queue
editorial board. He works on networking and operating
systems code for fun and profit, teaches courses on
various programming-related subjects, and encourages
your comments, quips, and code snips pertaining to his
Communications column.

Copyright held by author.

go without saying, but the real rea-
son most of us wind up in the pits of
cherry-picking is because we have
not been doing the real work of peri-
odically merging whatever code we
are working against. We have let the
head of the tree, or the tip of the git,
or whatever trite phrase people might
want to use, get away from us, and the
longer we wait to do the merge, the
more pain we are going to suffer. The
best way to keep from being stuck in
the cherry orchard is to have a merged
and tested branch ready to go when it
is time for your project to resynchro-
nize with the head of the development
tree. I know this is more work than
isolating yourself in a corner and just
working on the next release, but in
the end it will save you a lot of head-
aches. The question next time won’t
be, “When do I stop cherry-picking?”
but simply, “When is the new branch
ready to receive the work we have al-
ready done?”

KV

Dear KV,
I just started working for a new project
lead who has an extremely annoying
habit. Whenever I fix a bug and check
in the fix to our code repository, she
asks, “How do you know this is fixed?”
or something like that, questioning ev-
ery change I make to the system. It is as
if she does not trust me to do my job.
I always update our tests when I fix a
bug, and that should be enough, don’t
you think? What does she want, a for-
mal proof of correctness?

I Know Because I Know

Dear I Know,
Working on software is more than just
knowing in your gut that the code is
correct. In actuality, no part of work-
ing on software should be based on gut
feelings, because, after all, software is
supposed be a part of computer sci-
ence, and science demands proof.

One of the problems I have with
the current crop of bug-tracking sys-
tems—and trust me, this is only one of
the problems I have with them—is that
they do not do a good job tracking the
work you have done to fix a bug. Most
bug trackers have many states a bug
can go through: new, open, analyzed,

fixed, resolved, closed, and so forth,
but that is only part of the story of fix-
ing a bug, or doing anything else with a
program of any size.

A program is an expression of some
sort of system that you, or a team, are
implementing by writing it down as
code. Because it is a system, one has to
have some way of reasoning about that
system. Many people will now leap up
and yell, “Type Systems!”, “Proofs!”,
and other things about which most
working programmers have no idea
and are not likely ever to come into
contact with. There is, however, a sim-
pler way of approaching this problem
that does not depend on a fancy or eso-
teric programming language: use the
scientific method.

When you approach a problem, you
should do it in a way that mirrors the
scientific method. You probably have
an idea of what the problem is. Write
that down as your theory. A theory ex-
plains some observable facts about
the system. Based on your theory, you
develop one or more hypothesis about
the problem. A hypothesis is a testable
idea for solving the problem. The nice
thing about a hypothesis is that it is
either true or false, which works well
with our Boolean programmer brains:
either/or, black or white, true or false.

The key here is to write all of this
down. When I was young I never wrote
things down because I thought I could
keep them all in my head. But that was
nonsense; I could not keep them all in
my head, and I did not know the ones I
had forgotten until my boss at the time
asked me a question I could not an-
swer. It is unsettling to realize you have
a dumb look on your face in response
to a question about something you are
working on.

Eventually I developed a system of

When you approach
a problem, you
should do it in
a way that mirrors
the scientific method.

