
1

Team International

Report: Deliverable #5: Fault Injection

Project: Celestia-g2

Date: 11.29.2016

Members: Gui Costa, Megan Landau, Tony Tang

Task: Design and inject 5 faults into the code you are testing that will cause at least 5 tests to

fail, but hopefully not all tests to fail. Exercise your framework and analyze the results.

Figure 1: Test results before fault injections.

Below are detailed descriptions of what faults were injected, how each method was changed,

which test cases were affected by the fault injection, a figure of the Test Results Table after

fault injection, and an analysis of the results.

1. First Fault Injection:

● Description: Inject a fault into method radToDeg method found in the mathlib.h

library. Changed the first multiplication operation in the return statement to

division.

● Original Method:

template<class T> T radToDeg(T r)
{
 return r * 180 / static_cast<T>(PI);

2

}

● Method with fault injection:

template<class T> T radToDeg(T r)
{

return r / 180 /static_cast<T>(PI);
}

● Test cases failed: testCase009, testCase022,testCase023, and testCase025

● Test results table:

Figure 2: Test results after first fault injection

● Analysis: According to the original results test cases 005, 009, 0022, and 0023

passed while test case 0025 failed. After the fault was injected test case 005 was

the only test case to pass while test cases 009, 022, 023, and 025 failed. Test

cases 009, 022, and 023 were the only test cases to change from a pass to a fail.

The result of test case 005 and test case 025 remained the same.

3

2. Second Fault Injection:

● Description: Inject a fault into the square method found in the mathlib.h library.

Changed the multiplication operator to a division operator.

● Original method:

template<class T> T square(T x)
{
 return x * x;
}

● Method with fault injection:

template<class T> T square(T x)
{

return x / x;
}

● Test cases failed: testCase001, testCase002, testCase013, testCase014,

testCase015

● Test results table:

Figure 3: Test results after second fault injection

● Analysis: Before the fault was injected test cases 001, 002, and 015 passed while

test cases 013 and 014 failed. After the fault was injected all test cases which

4

includes 001, 002, 013, 014, and 015 failed. Test cases 013 and 014 resulted in a

fail before the fault was injected and after, meaning the fault had no effect on

the outcome of the test. In other words, test cases 013 and 014 failed both

times. Test cases 001, 002, 013, 014, and 015 all failed after the fault was

injected because the division operator was dividing the inputted variable by

itself. This resulted in an actual output of 1 for test cases 001,002,013, and 014.

Test case 015 resulted in a fail because the actual output could not be calculated

due to division by 0.

3. Third Fault Injection:

● Description: Inject a fault into sphereArea method found in the mathlib.h library.

Changed the multiplication operator to a division operator for the first

multiplication operator only.

● Original method:

template<class T> T sphereArea(T r)
{
 return 4 * (T) PI * r * r;
}

● New method:

//inject a fault into sphereArea method
template<class T> T sphereArea(T r)
{

return 4 / (T) PI * r * r;
}

● Test cases failed: testCase003, testCase006, testCase018, testCase019

5

● Test results table:

Figure 4: Test results after third fault injection

● Analysis: Before the fault was injected into the sphereArea method, test cases

003, 006, 012, and 018 passed while test case 019 failed. After the fault was

injected into the sphereArea method, test cases 003, 006, 018, and 019 failed

while only test case 012 passed. Test cases 012 and 019 did not change the

outcome of pass or fail due to the fault injection. Test case 012 resulted in a pass

outcome before the fault injection and after the fault injection. Test case 019

resulted in a fail outcome before the fault injection and after the fault injection.

Test case 012 passed after the fault injection because the input variable was 0. It

is interesting to note that there was no empty value for the actual output for test

case 012 and it did not result in a division by zero error.

4. Fourth Fault Injection:

● Description: Inject a fault into circleArea method found in the mathlib.h library.

Changed all multiplication operators to division operators.

● Original method:

template<class T> T circleArea(T r)
{
 return (T) PI * r * r;
}

6

● New method:

//inject a fault into circleArea method
template<class T> T circleArea(T r)
{

return (T) PI / r / r;
}

● Test cases failed: testCase008, testCase011, testCase020, testCase021,

testCase024

● After fault injection:

Figure 5: Test results after fourth fault injection

● Analysis: Before the fault was injected into the circleArea method test cases 011,

020, and 024 passed while test cases 008 and 021 failed. After the fault was

injected, test cases 008, 011, 020, 021, and 024. All test cases that tested the

circleArea method failed after changing all the multiplication operators to

division operators. Also, on testCase 011 after the fault injection, the actual

output was found to be inf, shown on the table above. When searching google,

this means infinity in C++ and the test case resulted in fail because 0 does not

equal infinity.

7

5. Fifth Fault Injection:

● Description: Inject a fault into cube method in the mathlib.h library. Changed all

of the multiplication operators to subtraction operators.

● Original method:

template<class T> T cube(T x)
{

return x * x * x;
}

● New Method:

template<class T> T cube(T x)
{

return x - x - x;
}

● Test cases failed: testCase004, testCase007, testCase010, testCase016,

testCase017

● Test results table:

Figure 6: Test results after fifth fault injection

8

● Analysis: Before the fault injection of the cube method, test cases 004 and 007

passed while test cases 010, 016, and 017 failed. After the fault injection, test

cases 004, 007, 010, 016, and 017 all failed due to changing all of the

multiplication operators to subtraction operators. When changing these

operators, all of the test cases would fail because the actual output is vastly

different from the expected output. For example, look at test case 004, the

expected outcome was 512 but after the fault injection, the actual output was

-8. These numbers are really spread apart from being the same value. Test

cases 010, 016, and 017 resulted in a fail status before and after the fault

injection. Test cases 004 and 007 changed from pass to fail after the fault

injection.

